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DNA Basics
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ACGT

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

Sequence of Base Pairs
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GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Hence DNA is a string over a 4-letter ACGT alphabet
Human genome : ~3 billion base pairs 

= 750 Megabytes (since 1 byte encodes 4 base pairs)

= 1 movie download!



DNA Double Helix
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Benzopyrene

By Richard Wheeler (Zephyris) 2007. Solution structure of 

a trans-opened (10S)-dA adduct of +)-(7S,8R,9S,10R)-7,8-

dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene

in a DNA duplex. Wikimedia Commons.

(What happens when you smoke)



Watson-Crick Duality

Equal Single Strands

G⊥ = C

T⊥ = A
ComplementarityDouble Strand

G - C

T - A
Affinity

X⊥⊥ = X 

3’ end
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Equal Single Strands

Complementary Single Strands

Hence (G:A:C:T)⊥ = A:G:T:C = T⊥:C⊥:A⊥:G⊥

(X:Y)⊥ = Y⊥:X⊥

Watson-Crick duality
(for any sequences of bases X,Y)

all written 

from 5’ to 3’



Hybridization
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Hybridization is also called annealing; denaturation is also 

called melting.

The direction of the reaction (or in general the equilibrium 

between the two states) is determined by a number of 

factors, e.g. temperature.

We assume we are in conditions that favor hybridization 

beyond a certain length of matching region. 



DNA Nanotechonology
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Nano Tasks

● Sensing

o Binding to specific molecules

● Computing

o Analog: Signal Filtering or Amplification

o Digital: Logical gates

● Actuating

o Releasing molecules

o Producing forces

● Constructing

Sensing

Computing

ActuatingConstructing
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● Constructing

o By self-assembly

o Or under 'program' control

● Nucleic Acids (DNA/RNA) 

o Probably the only materials that can 

perform all these functions. 

o Technology relatively well developed.

o They can interface to biological entities.

ActuatingConstructing

Y. Benenson et al., An autonomous molecular computer for logical control of gene 

expressionNature 429, 423-429 (2004)



DNA as a Building Material

Slides by John Reif
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2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars



DNA Origami
Nature, 2006

Paul W K Rothemund 

California Institute of Technology

PWK Rothemund, Nature 440, 297 (2006) 





William Shi

Harvard
S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)



3D Wireframe Icosahedron

142009-07-01Luca Cardelli 142009-07-01

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 

Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shi

Harvard



Self-assembly of a DNA origami box
Andersen et al Nature 2009, 459, 73

Aurhus Univ, Denmark



DNA circuit boards (IBM )

"What we are really making 

are tiny DNA circuit boards 

that will be used to assemble 

other components." 

--Greg Wallraff, IBM

6 nm grid of 

individually 

addressable 

pixels

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006) 

+
DNA-wrapped 

nanotubes
-self-assembly

-6 nm feature spacing

-versatile template / etch mask



DNA as a Computational Material
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Aptamers (Sensors)
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Computation: Curing Cancer with one AND Gate

192009-07-01Luca Cardelli 192009-07-01



Actuators

DNA Walkers
(Yin, Choi, Calvert & Pierce, Nature 2008)

DNA Tweezers
(Yurke & Turberfield, Nature 2000)
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Summary

● DNA technology is making great progress

o Developing sensor, actuators, and building materials.

o All thanks to the programmable nature of DNA.

● DNA computation has also been investigate deeply.

o DNA tiling systems are Turing complete. They can be used to build 'carpets' 

with predetermined size and organization.

o Automata and Turing machines have been demonstrated or designed.
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o Automata and Turing machines have been demonstrated or designed.

● But there is still space for creativity

o What is the 'best' way to write algorithms with DNA?

● What is DNA nanotech for? Ultimately:

o To construct 'arbitrary' nanomaterials.

o To compute 'in vivo'.



Computation by 
DNA Strand Displacement
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DNA Computing

● Early DNA Computing

o Demonstrated computation by DNA hybridization [Adelman].

o Why DNA? Widely available mature technology.

o Massively concurrent (but still not enough for NP-complete problems).

o Slow and awkward (manual cycling).

● New Focus

o Not going to compete with Intel in speed (hours … days).
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o Not going to compete with Intel in speed (hours … days).

o But can interface with biological systems!

o For detection and intervention in live organisms.

● New Paradigm

o Autonomous DNA computation (mix-and-go) [Yurke&Mills].

o Output readout by fluorescence or atomic microscopy, in vitro.

o Or by influencing cellular mechanisms in vivo [Shapiro survey].



Branch Migration

branching 

point
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The branching point moves left and right by a 

random walk. Until it reaches an end point.



Short and Long Segments
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Strand Displacement Reaction

toehold Irreversible
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blocked

Reversible! 
because the random walk is ‘reflected’ by the blockage

Partial

Match

Irreversible match is determined by the toehold plus the branch migration region. 

That is, the toehold is a cache for the full address. The toehold must be short enough to 

guarantee reversible binding, but the branch migration region is practically unlimited.

This means that the address space is unlimited.



Toehold Exchange Reaction

Reversible
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Signal Strand

xh = history
xt = toehold
xb = binding

D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal 
Substrate for Chemical Kinetics. Proc. DNA14.

x

(We work with a simpler version of their signal stands.)

282009-07-01Luca Cardelli 282009-07-01

xb = binding

The history xh is not part of signal recognition: strands with 
different histories should behave the same. Hence, x denotes 
an equivalence class of strands with different histories.

The combination xt,xb identifies the signal x.

If x≠y then x and y⊥ are not supposed to hybridize.



Signals and Gates

● Signals “x” are always positive strands

● Gates “x.y” always have a negative strand toehold and backbone.

o that is, the input “x” is implicitly perp’ed

o and the output “y” is another positive signal

● This separation helps the DNA realization, as one can use 3-letter 

alphabets (ATC/ATG) for each strand, minimizing secondary structure and 
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alphabets (ATC/ATG) for each strand, minimizing secondary structure and 

entanglement.



Inert Systems

A system is considered inert (terminated) if it has no free toeholds.
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x.[] Annihilator Gate
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This is just the strand displacement reaction, but seen as a 

gate absorbing a signal x and producing nothing (0 = inert).

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).



x.y Transducer Gate
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Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



x.[y,z] Fork Gate
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Gb,Gt (gate backbone and trigger) form the transducer.

Any history segment that is not determined by the gate 

structure is said to be ‘generic’ (can be anything).

Any gate segment that is not a non-history segment of an 

input or output signal is taken to be ‘fresh’ (globally unique 

for the gate), to avoid possible interferences.



[x,y].z Join Gate (function)

Basic function garbage!!
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Join can be implemented by a ‘reversible-AND gate’ taking two sequential inputs 

where the first one is reversible (Soloveichik Fig.3), so that x is not actually 

absorbed until y is found. The ‘garbage’ r1 must not be collected until y is found: 

this is signaled by the release of r2.



[x,y].z Join Gate (collection)

Garbage Collection
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Garbage collection of r1 is needed for join to work well. This is done by another 

reversible-AND between r1 and r2, triggered by the release of r2. This second 

reversible-AND leaves garbage too (r3, r4), but this can be collected immediately, as 

we know by construction that both inputs r1,r2 are available and we need not wait to 

revert their bindings. 

The extra intermediate c,d segments separate the r1 binding from the r2 binding. 

Without them, a segment yt:yb (instead of yt:c and d:yb) would be released: that is y!



[x1,..,xn].[y1,..,ym] General Join/Fork Gate

x1 | .. | xn | [x1,..,xn].[y1,..,ym] → y1 | .. | ym
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x.H(y) Curried Gates

Gates that return gates:
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For example, x.y.z: This means we can have gates of the form:

G   ::= [x1,..,xn].[x’1,..,x’m]  ⋮

[x1,..,xn].G         

n≥1, m≥0



Design, Compilation and Verification 
Challenges
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Exercise 3: x.[y,z] | x.[y,w] Interference
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● Suppose we ‘forgot’ to take a,b fresh, so they are shared by the two 

gates. Something goes horribly wrong from these initial conditions:

x | x.[y,z] | x | x.[y,w]

where x.[y,z] = G1b,G1t and x.[y,w] = G2b,G2t

● What goes wrong?



Exercise 3 Solution

Deadlocks! Consider x | x | x.[y,z] | x.[y,w], and suppose we had 

taken c fresh (hence different c1,c2), but did not used gate-unique 

segments for a,b:
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The G2t trigger can bind to the wrong G1b backbone and get stuck 
there, and vice versa, without ever releasing z or w.

This is just a made-up problem, but one must watch out for all kinds 
of possible interferences.



Exercise 4: x.y.z | [x,y].w Interference

Consider curried gates without the a,b segments (example below): instead of 

releasing xb,a and b,yt segments, they would release xb,yt.

But that is exactly the strand r1 of an [x,y].w gate: the strand that reverts the x 

input. This definitely causes an interference between x.y.z and [x,y].w.

Find a situation where the presence (x.y.z as below) or absence (x.y.z as in 

previous slide) of this interference causes different outcomes.

Hint: it changes outcome probability.

[David Soloveichik]
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Hint: it changes outcome probability.

Note: the a,b segments prevent the

interference.



Addressing the Challenges

● We need to formally specify

o The intended behavior of DNA gates.

o Their implementation.

● We need to verify

o That the implementation satisfies the specification.

o In all possible 'soups' (contexts).

o Possibly by modelchecking (the state space is highly combinatorial).
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o Possibly by modelchecking (the state space is highly combinatorial).



DNA Compilation

Separating Circuit Design from Gate Design

High level 
languages 
(TBD)

Low level 
languages

Seesaw
Gates

Assembly 
Diagrams

Strand
Algebra

Interacting
Automata

Circuit Design

(e.g. half-adders from 

Discrete
Chemistry

Higher-level 
languages

Petri
Nets

Boolean
Networks

Finite State
Automata
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DNA

Hairpin 
Opening

Other DNA 
Mechanisms

…
Strand

Displacement

Sequence
Design

(e.g. Boolean gates 

from transistors)

Gate Design

(e.g. half-adders from 
Boolean gates)

Verification



Summary

● DNA strand displacement technology 

o Provides a way of implementing abstract signal transducer networks.

o Fork gates and Join gates are the main components.

● How powerful it this style of computation?

● How do we verify its correctness?
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Strand Algebra
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Strand Algebra

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0

x is a signal

[x1,..,xn].[y1,..,ym] is a gate

0 is an inert solution

P|P is parallel composition of signals and gates

P* is a population (multiset) of signals and gates
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Reaction Rule

Auxiliary rules (axioms of diluted well-mixed solutions)

x1 | .. | xn | [x1,..,xn].[y1,..,ym]  → y1 | .. | ym

P  → P’ ⇒ P | P”  → P’| P” Dilution

P ≡ P1, P1 → P2, P2 ≡ P’ ⇒ P → P’ Well Mixing

Where ≡ is a congruence relation (syntactical ‘chemical mixing’)
with P* ≡ P | P* for unbounded populations.



Compiling Strand Algebra to DNA

● compile(x) = 

● compile([x1,..,xn].[y1,..,ym]) =

P   ::=   x  ⋮ [x1,..,xn].[y1,..,ym]  ⋮ 0  ⋮ P|P  ⋮ P*          n≥1, m≥0
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● compile(0) =   empty solution

● compile(P | P’) =  mix(compile(P), compile(P’))

● compile(P*) =  population(compile(P))



Boolean Networks

Boolean Networks to Strand Algebra
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This encoding is compositional, and can encode any Boolean network:

- multi-stage networks can be assembled (combinatorial logic)

- network loops are allowed (sequential logic)



Petri Nets

Transitions as Gates
Place markings as Signals 

Petri Nets to Strand Algebra
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Finite State Automata

FSA to Strand Algebra
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Input strings



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | B | C | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Interacting Automata

A B

!a

?c
?a

!b?b

C

!c

!c !c

A B

!a

?c
?a

!b?b

C

!c

900xA, 500xB, 100xC

([A,B].[B,B])* |
([B,C].[C,C])* |
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A B

!a

?c
?a

!b?b

C

A B

!a

?c
?a

!b?b

C

([B,C].[C,C])* |
([C,A].[A,A])* |
A | A | B | C

This is a uniform population of identical automata, 

but heterogeneous populations of interacting automata can be similarly handled. 



Strand Displacement
Intermediate Language

552009-07-01Luca Cardelli 552009-07-01



Syntax
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Dynamics
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Strand Displacement Simulation Tool

directive sample 30.0 1000

new xt@1.0,1.0 

new yt@1.0,1.0 

( 1000 * <xh xt^ xb>    

| 1000 * xt^:[xb yt^]<yb>:[a]

| 1000 * <yt^ a>

)

1 Transducer gate x.y (3 initial species)
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Strand Displacement Simulation Tool

directive sample 30.0 1000 

directive plot "<reporter>"

new xt@ 1.0 , 1.0 

( 1 * <xh xt^ xb>              

| 1000 * xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

| 1000 * <xt^ a xt^ reporter>

)

Fork Chain Reaction   x.[x,x] (3 initial species)

28 Species, 22 Reactions
<xh xt^ xb>
<xb xt^ xb>
<xt^ a xt^ reporter>
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<xt^ a xt^ reporter>
<reporter>
<a xt^ xb>
xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xb>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xb>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<xb>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xb>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<xb>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<xb>[xt^ xb]:[xt^ a xt^ reporter]
<xb>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<a>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<a>[xt^ xb]:[xt^ a xt^ reporter]
<a>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<xh>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<xh>[xt^ xb]:[xt^ a xt^ reporter]
[xt^]<a xt^ reporter>:[xb xt^]<xb>:[a xt^]<xb>:[reporter]

<xh xt^ xb> + xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xh>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xh>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]  {rxt^}<->{rmxt^}  <xb xt^ xb> + <xh>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<xh xt^ xb> + <xh>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xh>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xb xt^ xb> + xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xb>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xb>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]  {rxt^}<->{rmxt^}  <xb xt^ xb> + <xb>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<xh xt^ xb> + <xb>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xb>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xt^ a xt^ reporter> + xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  [xt^]<a xt^ reporter>:[xb xt^]<xb>:[a xt^]<xb>:[reporter]
<xt^ a xt^ reporter> + <xh>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  ->{rxt^}  <xh>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<xt^ a xt^ reporter> + <xb>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  ->{rxt^}  <xb>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<xb>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]  ->{rm}  <a xt^ xb> + <xb>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<xb>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]  ->{rm}  <reporter> + <xb>[xt^ xb]:[xt^ a xt^ reporter]
<a xt^ xb> + xt^:[xb xt^]<xb>:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <a>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a xt^ xb> + <xh>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xh>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a xt^ xb> + <xb>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <xb>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:<xb>[xt^]<xb>:[a xt^]<xb>:[reporter]  {rxt^}<->{rmxt^}  <xb xt^ xb> + <a>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]
<xh xt^ xb> + <a>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <a>[xt^ xb]:<xh>[xt^]<xb>:[a xt^]<xb>:[reporter]
<xt^ a xt^ reporter> + <a>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  ->{rxt^}  <a>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]
<a xt^ xb> + <a>[xt^ xb]:xt^:[a xt^]<xb>:[reporter]  {rmxt^}<->{rxt^}  <a>[xt^ xb]:<a>[xt^]<xb>:[a xt^]<xb>:[reporter]
<a>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]  ->{rm}  <a xt^ xb> + <a>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<a>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]  ->{rm}  <reporter> + <a>[xt^ xb]:[xt^ a xt^ reporter]
<xh>[xt^ xb]:[xt^ a]<xt^ reporter>:<a>[xt^]<xb>:[reporter]  ->{rm}  <a xt^ xb> + <xh>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]
<xh>[xt^ xb]:[xt^ a xt^]<reporter>:[reporter]  ->{rm}  <reporter> + <xh>[xt^ xb]:[xt^ a xt^ reporter]



Strand Displacement Simulation Tool

directive sample 1000.0 1000 

new xt@ 1.0 , 1.0 

new yt@ 1.0 , 1.0 

new zt@ 1.0 , 1.0 

new a@ 1.0 , 1.0 

new d@ 1.0 , 1.0 

( 1000 * <xh xt^ xb>    

| 1000 * <yh yt^ yb>           

| 1000 * xt^:[xb yt^]:[yb a^]:[b zt^]<zb>

| 1000 * <a^ b zt^>

| 1000 * [xb]:[yt^ c]:[d^ yb]:a^

| 1000 * <c d^>

| 1000 * d:[yb]

| 1000 * yt^:[c]

)

1 Join gate with garbage collection  [x,y].z (8 initial species)

34 Species, 19 Reactions
<xh xt^ xb>
<yh yt^ yb>
<yb a^>
<xb yt^>
<a^ b zt^>
<b zt^ zb>
<d^ yb>
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<b zt^ zb>
<d^ yb>
<c d^>
<xb>
<yt^ c>
<c>
xt^:[xb yt^]:[yb a^]:[b zt^]<zb>
<xh>[xt^ xb]:<xb>[yt^]:[yb a^]:[b zt^]<zb>
<xh>[xt^ xb]:yt^:[yb a^]:[b zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:<yb>[a^]:[b zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:a^:[b zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:[a^ b]<zt^>:<b>[zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:[a^ b zt^]
[xb]:[yt^ c]:[d^ yb]:a^
[xb]:[yt^ c]:[d^ yb]:[a^]<b zt^>
[xb]:[yt^ c]:[d^ yb]:<yb>[a^]
[xb]:[yt^ c]:d^:[yb a^]
[xb]:[yt^ c]:<c>[d^]:[yb a^]
[xb]:yt^:[c d^]:[yb a^]
[xb]:<xb>[yt^]:[c d^]:[yb a^]
[xb yt^]:[c d^]:[yb a^]
[xb]:<yh>[yt^]<yb>:[c d^]:[yb a^]
<xh>[xt^ xb]:[yt^]<c>:[yb a^]:[b zt^]<zb>
d:[yb]
yt^:[c]
[yt^]<c>:[c]
[yt^ c]
<xb>[yt^]:[c]
<yh>[yt^]<yb>:[c]

<xh xt^ xb> + xt^:[xb yt^]:[yb a^]:[b zt^]<zb>  {rmxt^}<->{rxt^}  <xh>[xt^ xb]:<xb>[yt^]:[yb a^]:[b zt^]<zb>
<xh>[xt^ xb]:<xb>[yt^]:[yb a^]:[b zt^]<zb>  {ryt^}<->{rmyt^}  <xb yt^> + <xh>[xt^ xb]:yt^:[yb a^]:[b zt^]<zb>
<yh yt^ yb> + <xh>[xt^ xb]:yt^:[yb a^]:[b zt^]<zb>  {rmyt^}<->{ryt^}  <xh>[xt^ xb]:<yh>[yt^ yb]:<yb>[a^]:[b zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:<yb>[a^]:[b zt^]<zb>  {ra^}<->{rma^}  <yb a^> + <xh>[xt^ xb]:<yh>[yt^ yb]:a^:[b zt^]<zb>
<a^ b zt^> + <xh>[xt^ xb]:<yh>[yt^ yb]:a^:[b zt^]<zb>  ->{ra^}  <xh>[xt^ xb]:<yh>[yt^ yb]:[a^ b]<zt^>:<b>[zt^]<zb>
<xh>[xt^ xb]:<yh>[yt^ yb]:[a^ b]<zt^>:<b>[zt^]<zb>  ->{rm}  <b zt^ zb> + <xh>[xt^ xb]:<yh>[yt^ yb]:[a^ b zt^]
<yb a^> + [xb]:[yt^ c]:[d^ yb]:a^  {rma^}<->{ra^}  [xb]:[yt^ c]:[d^ yb]:<yb>[a^]
<a^ b zt^> + [xb]:[yt^ c]:[d^ yb]:a^  {rma^}<->{ra^}  [xb]:[yt^ c]:[d^ yb]:[a^]<b zt^>
[xb]:[yt^ c]:[d^ yb]:<yb>[a^]  {rd^}<->{rmd^}  <d^ yb> + [xb]:[yt^ c]:d^:[yb a^]
<c d^> + [xb]:[yt^ c]:d^:[yb a^]  {rmd^}<->{rd^}  [xb]:[yt^ c]:<c>[d^]:[yb a^]
[xb]:[yt^ c]:<c>[d^]:[yb a^]  {ryt^}<->{rmyt^}  <yt^ c> + [xb]:yt^:[c d^]:[yb a^]
<yh yt^ yb> + [xb]:yt^:[c d^]:[yb a^]  {rmyt^}<->{ryt^}  [xb]:<yh>[yt^]<yb>:[c d^]:[yb a^]
<xb yt^> + [xb]:yt^:[c d^]:[yb a^]  ->{ryt^}  [xb]:<xb>[yt^]:[c d^]:[yb a^]
[xb]:<xb>[yt^]:[c d^]:[yb a^]  ->{rm}  <xb> + [xb yt^]:[c d^]:[yb a^]
<yt^ c> + <xh>[xt^ xb]:yt^:[yb a^]:[b zt^]<zb>  {rmyt^}<->{ryt^}  <xh>[xt^ xb]:[yt^]<c>:[yb a^]:[b zt^]<zb>
<yh yt^ yb> + yt^:[c]  {rmyt^}<->{ryt^}  <yh>[yt^]<yb>:[c]
<xb yt^> + yt^:[c]  {rmyt^}<->{ryt^}  <xb>[yt^]:[c]
<yt^ c> + yt^:[c]  ->{ryt^}  [yt^]<c>:[c]
[yt^]<c>:[c]  ->{rm}  <c> + [yt^ c]



Sequence Design

Input
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Output



Conclusions
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Conclusion

● Nucleic Acids

o Programmable matter

● DNA Strand Displacement

o A computational mechanism at the molecular level

● DNA Compilation

o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)
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o High-level languages (Boolean Networks, Petri Nets, Interacting Automata)

o Intermediate languages.

o Sequence generation.

● Tools

o Thermodynamic analysis.

o Simulation.

o Verification (not yet).



Abstract

Nucleic acids (DNA/RNA) encode information digitally, and are currently the only truly ‘user-

programmable’ entities at the molecular scale. They can be used to manufacture nano-scale structures, 

produce physical forces, act as sensors and actuators, and do computation in between. Eventually we will 

be able to interface then with biological machinery to detect and cure diseases at the cellular level 

under program control. 

The technology to create and manipulate them has existed for many years, but the imagination necessary 

to exploit them has been evolving slowly. Recently, some very simple computational schemes have been 

developed that are autonomous (run on their own once started) and involve only short (easily 

synthesizable) DNA strands with no other complex molecules. To get this started, one emails some short 
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synthesizable) DNA strands with no other complex molecules. To get this started, one emails some short 

character strings to a company to get the DNA strands built, mixes them up, and reads the output 

(fluorescence) with a camera. And yes, this can be done in your kitchen, more or less.

But of course we need programming tools. Molecular design is required to produce molecules that fold, 

or do not fold, or stick, or do not stick in the desired ways: this can be achieved fairly predictably only 

for DNA/RNA (e.g. not for proteins). On that basis one can design various kinds of ‘logic gates’ and 

‘computational architectures’, which is where much of the imagination is currently needed. 

Then one needs programming languages both at the level of gate implementation (where Andrew Phillips 

in Cambridge is building a strand-level language and simulator), and at the level of circuit 

implementation (where I will describe a Strand Algebra for implementing e.g. automata and Petri nets). 

Since DNA computation is massively concurrent, some tricky and yet familiar issues arise, like having to 

formally verify gate designs to avoid subtle deadlocks and race conditions, and having to design high-

level languages that exploit concurrency and stochasticity.


